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The linearly independent and minimal conjugated (LM-conjugated) circuits of benzenoid
hydrocarbons play the central role in the conjugated circuit model. For a general case, the enu-
meration of LM-conjugated circuits may be tedious as it requires construction of all Kekule
structures. In our previous work, a recursive method for enumeration of LM-conjugated cir-
cuits of benzenoid hydrocarbons was established. In this paper, we further extend the recursive
formulae for enumerations of LM-conjugated circuits for both catacondensed benzenoid hy-
drocarbons and some families of structurally related pericondensed benzenoid hydrocarbons.
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1. Introduction

The conjugated circuit model is a resonance-theoretic model was introduced by
Randic [1–3] in 1976 for the study of aromaticity and conjugation in polycyclic conju-
gated systems. The model was motivated from an empirical point of view elaborating the
Clar aromatic sextet theory [4]. The conjugated-circuit model has also a firm quantum-
mechanical basis [5–7]. It can be derived regorously from the Pauling–Wheland reso-
nance theory [8,9] via a Simpson–Herndon model Hamiltonian [10,11]. In recent years,
many investigations on the conjugated-circuit model have been made [12–24]. The enu-
meration of LM-conjugated circuits had led to expressions for the resonance energies of
polycyclic conjugated hydrocarbons [12]. It is also applied to calculate generalized bond
orders of benzenoid hydrocarbons [13]. However, for a general case, the enumeration
of LM-conjugated circuits of benzenoid hydrocarbons requires to construct all Kekule
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structures and then to find a set of LM-conjugated circuits for every Kekule structure.
When sizes of molecules increase, the numbers of Kekule structures increase fast, hence
enumerating LM-conjugate circuits by the method becomes tedious.

It was suggested in [12] that rather than considering individually each single mole-
cule it may be better to review a family of related structures of which the molecule in
question is a member. By analyzing a sequence of expressions for the molecular reso-
nance energies, one tries to find some regularity for the coefficients indicating the contri-
butions of the LM-conjugated circuits of different sizes. In this way, the expressions of
resonance energies for still larger members of a family of structurally related structures
are obtained without explicit construction of Kekule structures.

A useful idea in that approach is a partitioning of resonance energy to the expres-
sions for the individual rings of the structures considered. The contribution of a ringsj
of a benzenoid hydrocarbonB to the summation expression of LM-conjugated circuits
of B may be denoted by a sequence of numbers, (r1(sj ), r2(sj ), . . . , rn(sj ), . . .), where
rj (sj ) is the number of the LM-conjugated circuits of size 4n + 2 with respect to the
ring sj , which is called the ring code ofsj . The total sum of ring codes of all rings ofB
just corresponds to the summation over all LM-conjugated circuits ofB.

For some families of structurally related structures, use of ring codes has special
advantage. It allows one to perceive regularities for the coefficients from the count of
LM-conjugated circuits of different sizes more readily. Figure 1 shows some families
of benzenoid hydrocarbons considered in [12]. Their ring codes were given by finding
the interrelation of the coefficients of various LM-conjugated circuits or finding the reg-
ularities or a recursion of a ring codes to smaller members of the families. However, in
general cases, it is usually very difficult to find such regularities among the coefficients
of various LM-conjugated circuits and the ring codes between smaller members of a
family of related structures.

In a previous work [14], we established a recursive method for enumeration of
LM-conjugated circuits of some benzenoid hydrocarbons, by which the summation ex-
pression of LM-conjugated circuits (called LM-conjugated circuit polynomial, or simply
LMCC-polynomial) of some benzenoid hydrocarbons can be directly obtained from the
LMCC-polynomials and the Kekule structure counts of their subgraphs. In order to ob-
tain recursive formulae of LMCC-polynomials of some benzenoid hydrocarbons by the
recursive method, further investigations are needed.

In a recent work [15], we also gave another method to obtain ring codes of any ben-
zenoid hydrocarbon from the Kekule structure counts of some subgraphs of the graph.
However, for catacondensed benzenoid hydrocarbons and some families of structurally
related pericondensed benzenoid hydrocarbons, it is still more convenient to obtain re-
cursive formulae of their LM-conjugated circuit polynomials directly.

In this paper, we extend the recursive formulae for enumeration of LM-conjugated
circuits for both catacondensed benzenoid hydrocarbons and some families of struc-
turally related pericondensed benzenoid hydrocarbons.
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Figure 1. Some families of benzenoid hydrocarbons.

2. Some related definitions and results

Definition 1. A benzenoid hydrocarbon (BH) is a 2-connected plane graph for which
every interior face is bounded by a regular hexagon. A connected subgraph of a BH is
said to be a BH-fragment (BHF). LetB be a BH.B is said to be normal ifB contains no
fixed bond (i.e., no bond appearing with the same multiplicity in every Kekule structure);
otherwiseB is essentially disconnected. A normal componentBi of B is a maximal
subgraph ofB with no fixed bond (possibly,Bi = B, that is,B is normal). All normal
components ofB are denoted byB∗. The boundary of an interior face of a BH or BH-
fragment is called a ring of it.



328 X. Guo, M. Randic / Recursive formulae for enumeration

Figure 2. A minimal conjugated circuitC2 of the rings in a benzenoid hydrocarbonB (called a crown)
(C1 is not minimal).

Definition 2 [14]. A set S of linearly independent and minimal conjugated circuits
of a Kekule structureKi of a benzenoid hydrocarbonB consists of a maximum
number of linearly independent circuits ofB in which every circuit is a conju-
gated circuit ofKi (simply, a Ki-conjugated circuitC, that is, a circuit whose
edges alternately present asKi-double andKi-single bonds), and has the minimum
length.

In fact, a setS of linearly independent and minimal conjugated circuits of a Kekule
structureKi of B is a basis in conjugated circuit space, where “linearly independent”
means any circuit inS cannot be obtained by linear combination of other circuits
in S.

We denote a circuit of size 4n + 2 in S by Rn, and the summation expression
of S by R(Ki) = ∑

Rj∈S Rj =
∑

n=1,2,... rn(Ki)Rn, wherern(Ki) is the number of the
circuits of size 4n+2 in S. The summation over all sets of LM-conjugated circuits of all
Kekule structures ofB is denoted byR(B) = R =∑

Ki
R(Ki) =∑

n=1,2,... rnRn, where
rn = ∑

Ki
rn(Ki). We also sayR(B) is the LM-conjugated circuit polynomial ofB or

simply the LMCC-polynomial ofB, which is a polynomial of degree one with multi-
variants.R(B) may also be denoted by a sequence of numbers (r1, r2, r3, . . . , rn, . . .),
called the LMCC-code ofB.

Definition 3 [14]. Let s be a ring of a benzenoid hydrocarbonB, andKi a Kekule
structure ofB. A Ki-conjugated circuitC is said to be a minimal conjugated circuit of
the rings if the interior ofC contains the interior ofs andC has the minimum length.
We also say that aKi-conjugated circuitC of B is minimal if there is a rings in B such
thatC is a minimal conjugated circuit ofs (see figure 2). The maximal subgraph ofB
bounded byC is denoted byB[C].

In particular, a circuitC is said to be an minimal conjugated circuit of a rings
if there is a Kekule structureKi of B such thatC is a minimalKi-conjugated circuit
of s. The corollary 2 in [14] shows that a minimalKi-conjugated circuitC of a ring s
of a benzenoid hydrocarbonB corresponds to a unique rings such thatC is a minimal
Ki-conjugated circuitC of s in B.

Theorem A [14]. Let Ki be a Kekule structure of a benzenoid hydrocarbonB, and
let C be a minimalKi-conjugated circuit of a rings of B. ThenB[C] is one of
the BHs indicated in figure 3, and theKi-double bonds inB[C] are uniquely deter-
mined.
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Figure 3. A general configuration of a minimalKi -conjugated circuitC of a rings in a benzenoid hydro-
carbonB.

Theorem B [14]. LetKi be a Kekule structure of a benzenoid hydrocarbonB. A set
S = {C1, C2, C3, . . . , Ct} of Ki-conjugated circuits ofB is a set of LM-conjugated
circuits ofKi if and only if for any ringsj in any normal component ofB, there is
exactly one circuitCj in S such thatCj is a minimalKi-conjugated circuit ofsj .

Theorem B establishes the theoretical basis of the partition of the LMCC-
polynomial ofB into the LMCC-polynomials of rings ofB. The LMCC-polynomial
of a ring s in B, denoted byRs(B), is determined by taking the summation expres-
sion of the minimal conjugated circuits ofs, one for every Kekule structure ofB, and
R(B) =∑B

s Rs(B). Rs(B) may also be denoted by a sequence of numbers (ring code)
(r1(s), r2(s), . . . , rn(s), . . .), wherern(s) is the coefficient of the termRn in Rs(B).

Theorem C [14]. Let B1, B2, . . . , Bt be eithert mutually disjoint BH-fragments with
B = B1 ∪ B2 ∪ · · · ∪ Bt or the normal components of an essentially disconnected BH-
fragmentB. ThenR(B) =∑t

i=1 (K(B)/K(Bi))R(Bi).

Definition 4 [14]. For an edgee = uv of a benzenoid hydrocarbonB, let Be(Be) de-
note the labeled graph ofB for which the edgee is labeled as double (single) bond,
and letB∗e (B∗e ) denote the normal components ofB–u–v (B–e) (B∗e andB∗e may be
thought as the normal components ofBe(Be), sincee is in fact a fixed double (single)
bond inBe(Be)). The subgraph ofBe(Be) induced by the hexagons inBe(Be) which
are not inB∗e (B∗e ) is denoted byB ′e(B ′e). The contribution of all rings inB∗e (B∗e ) to
R(Be) (R(Be)) is denoted byR∗(Be)(R∗(Be)), and the contribution of all rings inB ′e
(B ′e) toR(Be) (R(Be)) is denoted byR′(Be) (R′(Be)).

Theorem D [14]. Let e be an edge on the boundary of a benzenoid hydrocarbonB, and
let Sh(B ′e)(Sh(B ′e)) be the set of rings inB ′e (B ′e). LetCs(Be)(Cs(Be)) denote the set of
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Figure 4. A local structure in a benzenoid hydrocarbon.

minimal conjugated circuits of a rings in Be(Be). Then

for s ∈ Sh
(
B ′e

)
, Rs(Be) =

∑
C∈Cs(Be)

K(B–C)R(|C|−2)/4,

for s ∈ Sh
(
B ′e

)
, Rs(Be) =

∑
C∈Cs(Be)

K(B–C)R(|C|−2)/4,
(1)

where|C| denotes the length ofC,K(B–C) is the number of Kekule structures ofB–C;

R′(Be) =
∑

s∈Sh(B ′e)
Rs(Be) =

∑
s∈Sh(B ′e)

∑
C∈Cs(Be)

K(B–C)R(|C|−2)/4, (2)

R′(Be) =
∑

s∈Sh(B ′e)
Rs(Be) =

∑
s∈Sh(B ′e)

∑
C∈Cs(Be)

K(B–C)R(|C|−2)/4.

Definition 5 [14]. Let e be an edge on the boundary of a benzenoid hydrocarbonB.
If B and e satisfy one of the following conditions: (1)B contains no crown (see the
benzenoid hydrocarbon in figure 2) as its subgraph; (2)B contains a local structure as
shown in figure 4, ande is the marked edge in figure 4; (3)B contains a local structure
as shown in figure 5, ande is the marked edge in figure 5; thene is said to be a recursive
edge ofB.

Theorem E [14]. Let B be a BH which contains a recursive edgee on the boundary
of B. Then

R(B)=R∗(Be)+ R∗(Be)+ R′(Be)+ R′(Be)
=R(

B∗e
)+ R(

B∗e
)+ ∑

s∈Sh(B ′e)

∑
C∈Cs(Be)

K(B–C)R(|C|−2)/4

+
∑

s∈Sh(B ′e)

∑
C∈Cs(Be)

K(B–C)R(|C|−2)/4.
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Figure 5. A local structure in a benzenoid hydrocarbon.

Definition 6 [14]. Let C be a minimal conjugated circuit of a rings of a benzenoid
hydrocarbonB, and lets′ be a hexagon ofB for whichC ∩ s′ �= ∅ and the interior ofs′
is contained in the exterior ofC. If C ′ = C�s′ (the symmetry difference of edge sets
of C ands′) is also a minimal conjugated circuit ofs, then we sayC ′ is obtained fromC
by a extension ands′ is a extendible hexagon ofC. For a rings in B ′e (B ′e), a minimal
conjugated circuitC of s in Be (Be) is said to be minimum ifC has the smallest length
andB[C] contains a smallest number of hexagons.

Theorem F [14]. Let e be a recursive edge of a benzenoid hydrocarbonB, and lets
be a ring inB ′e (B ′e). Let C be a minimal conjugated circuit ofs in Be (Be) which is
not minimum. ThenC can be obtained from another minimal conjugated circuit ofs in
Be (Be) by an extension.

Procedure 1 [14]. Let e be a recursive edge of a benzenoid hydrocarbonB, ands a ring
in B ′e(B ′e). LetC∗ be a unique minimum conjugated circuit ofs in Be(Be).

(1) SetS0 = {C∗}, Si = S0.

(2) For every minimal conjugated circuitCi in Si, find all extendible hexagons
of Ci , extendCi to new minimal conjugated circuits, and set them toSi+1.

(3) If Si+1 = 0, then go to (4). Otherwise seti + 1→ i, go to (2).

(4) SetCs(Be) = ⋃i
j=1 Sj (Cs(Be) =

⋃i
j=1 Sj ).

An example of application of procedure 1 is shown in figure 6.
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Figure 6. An example for application of procedure 1.

3. LM-conjugated circuits in catacondensed benzenoid hydrocarbons

In general cases, a catacondensed benzenoid hydrocarbon (cata-BH)B has the
construction shown in figure 7, whereB1, B2, B3, . . . , B15 are subgraphs ofB, each of
which is a cata-BH. Particularly, ifn2 = n3 = 0, B becomes a straight chain like cata-
BH.

Lemma 1. Let B = Ba(n) denote the straight cata-BH withn hexagons (see fig-
ure 1(a)). Then

R(B) = 2
n∑
i=1

(n+ 1− i)Ri. (3)

Proof. Be andBe are shown in figure 8. It is easy to verify by theorem E and proce-
dure 1 that

R
(
B∗e

) = 0, R
(
B∗e

) = R(
Ba(n−1)

)
, R′(Be) =

n∑
i=1

Ri, R′(B
e
) =

n∑
i=1

Ri,

and so

R
(
Ba(n)

) = 2
n∑
i=1

Ri + R
(
Ba(n− 1)

)
. (4)
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Figure 7. The construction of a catacondensed benzenoid hydrocarbon.

Figure 8. The labeled graphsBe andBe for a straight catacondensed benzenoid hydrocarbonB and an
edgee of B.

Repeatedly using equation (4), we have

R
(
Ba(n)

) = 2
n∑
i=1

Ri + 2
n−1∑
i=1

Ri + R
(
Ba(n− 2)

) = · · · = 2
n∑
i=1

(n+ 1− i)Ri.

Theorem 1. LetB be a cata-BH shown in figure 7. Then

R(B)=R(B1)+ (n1− 1)
[
K(B3)R(B2)+K(B2)R(B3)

]
+ 2K(B2)K(B3)

n−1∑
i=1

(n− i)Ri
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Figure 9. The labeled graphsBe andBe for a catacondensed benzenoid hydrocarbonB and an edgee of B.

+
[

7∏
j=4

K(Bj)

][
n1∑
i=2

n2−1∑
j=0

n3−1∑
k=0

Ri+j+k +
n1∑
i=2

Ri

]

+
[

11∏
j=6

K(Bj)

]
n1∑
i=2

n3−1∑
k=0

Ri+n2+k

+
[

15∏
j=4,5,12

K(Bj)

]
n1∑
i=2

n2−1∑
j=0

Ri+j+n3 +
[

15∏
j=8

K(Bj )

]
n1∑
i=2

Ri+n2+n3, (5)

where, ifn2 = 0 (n3 = 0), thenK(Bj ) = 1 for j = 2,4,5 (j = 3,6,7),K(Bj ) = 0 for
j = 8,9,10,11 (j = 12,13,14,15), and

n1∑
i=2

n2−1∑
j=0

n3−1∑
k=0

Ri+j+k =
n1∑
i=2

n3−1∑
k=0

Ri+k

(
n1∑
i=2

n2−1∑
j=0

Ri+j

)
.

Proof. Take a boundary edgee on the hexagon labeled byn1−1 as the recursive edge.
ThenB∗e = B2 ∪ B3 ∪ Ba(n1− 2), B∗e = B1 (see figure 9).

By theorems C, E, lemma 1, and procedure 1, we have

R
(
B∗e

)= 2K(B2)K(B3)

n1−2∑
i=1

(n1− 1− i)Ri + (n1− 1)
[
K(B2)R(B3)+K(B3)R(B2)

]
,

R′(Be)=K(B2)K(B3)

n1−1∑
i=1

Ri +
[

7∏
j=4

K(Bj )

][
n1∑
i=2

n2−1∑
j=0

n3−1∑
k=0

Ri+j+k +
n1∑
i=2

Ri

]

+
[

11∏
j=6

K(Bj )

]
n1∑
i=2

n3−1∑
k=0

Ri+n2+k +
[

15∏
j=4,5,12

K(Bj)

]
n1∑
i=2

n2−1∑
j=0

Ri+j+n3
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Figure 10. An unbranched catacondensed benzenoid hydrocarbonB.

+
[

15∑
j=8

K(Bj)

]
n1∑
i=2

Ri+n2+n3,

R
(
B∗e

)=R(B1), R′(Be) = K(B2)K(B3)

n1−1∑
i=1

Ri +
[

7∏
j=4

K(Bj)

]
n1∑
i=2

Ri,

and so (5) holds.

Corollary 1. LetB = Bu(m1,m2, . . . , mt) denote an unbranched cata-BH as shown in
figure 10. Then

R(B)=m1R(B2)+ R(B3)+
m1−1∑
i=1

[
2K(B2)(m1− i)+K(B3)

]
Ri + 2K(B3)

m2∑
i=1

Ri

+K(B3)

[
m1∑
i=2

m2−1∑
j=0

Ri+j + Rm1 − R1

]

+K(B4)

[
m1+m2∑
i=m2+2

Ri + 2Rm2+1 +
m2+m3∑
i=m2+2

Ri

]
+K(B5)Rm2+m3+1 (6)

where, ifm2 = 0 (m3 = 0), thenK(Bj) = 1 for j = 2,3 (j = 3,4) andK(Bj ) = 0 for
j � 4 (j � 5).
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Proof. Bu(m1,m2, . . . , mt ) corresponds to the case in theorem 1 withn3 = n5 =
n9 = 0, andn1 = m1, n2 = m2, n4 = m3, n8 = m4. By theorem 1, we have

R(B)=R(B1)+ (m1− 1)R(B2)+ 2K(B2)

m1−1∑
i=1

(m1− 1)Ri

+K(B3)

[
m1∑
i=2

m2−1∑
j=0

Ri+j +
m1∑
i=2

Ri

]
+K(B4)

m1∑
i=2

Ri+m2. (7)

Similarly, we have by theorem E that

R(B1)=R(B2)+ R(B3)+ 2K(B3)

m2∑
i=1

Ri +K(B4)(2Rm2+1

+
m2+m3∑
i=m2+2

Ri)+K(B5)Rm2+m3+1.

With the substitution of the expression forR(B1) into (7), we obtain the expression (6).

Using expressions (5), (6), we can easily obtain the calculation formulae for enu-
meration of LM-conjugated circuits of the cata-BHs in figure 1 as follows.

Corollary 2. LetBb(n), n � 2, be the cata-BH shown in figure 1(b). Then

R
(
Bb(n)

) = (6n− 2)R1+ 4(n− 1)R2+
n∑
i=3

(4n+ 3− 4i)Ri + Rn+1.

Corollary 3. LetBc(n), n � 1, be the cata-BH shown in figure 1(c). Then

R
(
Bc(n)

) = 4(4n+ 1)R1+ 8nR2+ 4
n∑
i=3

(2n+ 3− 2i)Ri + 6Rn+1 + 2Rn+2.

Corollary 4. LetBd(n), n � 2, be the cata-BH shown in figure 1(d). Then

R
(
Bd(n)

) = 2(8n− 3)R1+ 2(4n − 5)R2+
n∑
i=3

(8n+ 5− 8i)Ri + 3Rn+1 + Rn+2.

Corollary 5. LetBe(n), n � 1, be the cata-BH shown in figure 1(e). Then

R
(
Be(n)

) = 96nR1+ 8R2+ 8
n∑
i=2

(4n+ 5− 4i)Ri + 26Rn+1 + 12Rn+2 + 2Rn+3.
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Corollary 6. LetBf(n), n � 3, be the cata-BH shown in figure 1(f). Then

R
(
Bf(n)

) = n−1∑
i=0

Fi(2Fn−i−1R1+ 2Fn−i−2R2+ Fn−i−3R3),

whereFi = Fi−1 + Fi−2 is Fibonacci’s number,F0 = F1 = 1 andF = 0 for i � −1.

For more general cases, we give the following examples.

Corollary 7. LetBu(m1,m2) be an unbranched cata-BH (see figure 10). Then

R
(
Bu(m1,m2)

)= m1∑
i=1

[
2(m2+ 1)(m1− i)+ 1

]
Ri + 2

m2∑
i=1

[
m1(m2+ 1− i)+ 1

]
Ri

+
m1+m2∑
i=m2+2

Ri +
m1∑
i=2

m2−1∑
j=0

Ri+j − R1+ 2Rm2+1.

Corollary 8. LetBu(m1,m2,m3) be an unbranched cata-BH (see figure 10). Then

R
(
Bu(m1,m2,m3)

)
=

m1−1∑
i=1

{
2
[
m2(m3+ 1)+ 1

]
(m1− i)+ (m3+ 1)

}
Ri

+
m2∑
i=1

[
2m1(m3+ 1)(m2− i)+m1+ 2m3+ 2

]
Ri

+ 2
m3∑
i=1

[
(m3+ 1− i)(m1m2+ 1)+m1

]
Ri

+ (m3+ 1)
m1∑
i=2

m2−1∑
j=0

Ri+j +m1

m2∑
i=2

m3−1∑
j=0

Ri+j +
m1+m2∑
i=m2+2

Ri +
m2+m3∑
i=m2+2

Ri

+m1

m2+m3∑
i=m3+2

Ri − (m1+m3+ 1)R1+ (m3+ 1)Rm1 + 2Rm2+1 + 2m1Rm3+1

+ Rm2+m3+1.

Corollary 9. LetBY(n1, n2, n3) denote the cata-BH shown in figure 11. Then

R
(
BY(n1, n2, n3)

)
=

n1∑
i=1

[
2(n2+ 1)(n3+ 1)(n1− i)+ 1

]
Ri +

n2∑
i=1

[
2n1(n3+ 1)(n2+ 1− i)+ 1

]
Ri
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Figure 11. A catacondensed benzenoid hydrocarbonBY(n1, n2, n3) consisting of three straight catacon-
densed benzenoid hydrocarbons.

+
n3∑
i=1

2
[
n1(n2+ 1)(n3+ 1− i)+ 1

]
Ri +

n1∑
i=2

n2−1∑
j=0

n3−1∑
k=0

Ri+j+k +
n1∑
i=2

n2−1∑
j=0

Ri+j+n3

+
n1∑
i=2

n3−1∑
k=0

Ri+n2+j +
n2−1∑
i=2

n3−1∑
j=0

Ri+j +
n1+n2+n3∑
i=n3+1

Ri − 2R1 + Rn2+1+ Rn3+1.

4. LM-conjugated circuits in some families of structurally related
pericondensed benzenoid hydrocarbons

For enumerations of LM-conjugated circuits in some families of structurally related
pericondensed benzenoid hydrocarbons, we need to use theorem E and procedure 1,
and often need to deal with several recursive relations of several families of structurally
related subgraphs for a family of structurally related peri-BHs. We will give some results
but omit the operation processes.

We first give the recursive formulae for enumeration of LM-conjugated circuits of
the peri-BHs in figure 1.

Corollary 10. LetBg(n) be the BH shown in figure 1(g). Then

R
(
Bg(n)

)= 2
n∑
i=1

(5n+ 8− 5i)Ri + (10n + 6)R1+ 4(n+ 1)R2+ (n+ 2)R3+ 6Rn+1

+ 4Rn+2 + 2Rn+3.
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Corollary 11. LetBh(n) be the BH shown in figure 1(h). Then

R
(
Bh(n)

)= 2
n−1∑
i=0

R
(
Bh(i)

)+ 2

[
2
n−2∑
i=−1

(n− 1− i)K(
Bh(i)

) +K(
Bh(n− 1)

)]
R1

+ 8
n−2∑
i=−1

K
(
Bh(i)

)
R2+2

[
3
n−3∑
i=−1

(n−2− i)K(
Bh(i)

)+ 2K
(
Bh(n−2)

)]
R3

+ 8
n−3∑
i=−1

K
(
Bh(i)

)
R4+ 4

n−4∑
i=−1

(n− 3− i)K(
Bh(i)

)
R5,

where

R
(
Bh(0)

) = 2R1, K
(
Bh(n)

) = 2
∑n−1

i=−1K
(
Bh(i)

)
, K

(
Bh(0)

) = 2,

K
(
Bh(−1)

) = 1, and K
(
Bh(i)

) = 0 for i � −2.

Corollary 12. LetBi(n) be the BH shown in figure 1(i). Then, forn = 2p,

R
(
Bi(n)

)
= 2R

(
Bi(n− 1)

)+ (n/2)−2∑
j=−1

R
(
Bi(2j + 1)

)

+ 2

[
(n/2)−2∑
j=−1

(
n

2
− 1− j

)
K

(
Bi(2j + 1)

)+K(
Bi(n− 1)

)]
R1

+ 2
n−2∑
j=−1

K
(
Bi(j)

)
R2

+
{
(n/2)−2∑
j=−1

(
n

2
− 1− j

)[
2K

(
Bi(2j)

) +K(
Bi(2j + 1)

)]+K(
Bi(n− 2)

)}
R3

+
{
(n/2)−2∑
j=−1

[
2K

(
Bi(2j)

)+ (
n

2
− 2− j

)
K

(
Bi(2j + 1)

)]+K(
Bi(n− 3)

)}
R4;

for n = 2p + 1,

R
(
Bi(n)

)
= 2R

(
Bi(n− 1)

)+ (n−3)/2∑
j=0

R
(
Bi(2j)

)

+ 2

[
(n−3)/2∑
j=−1

(
n− 1

2
− j

)
K

(
Bi(2j)

)+K(
Bi(n− 1)

)]
R1+ 2

n−2∑
j=−2

K
(
Bi(j)

)
R2
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+
{
(n−3)/2∑
j=−1

[(
n− 1

2
− j

)
K

(
Bi(2j)

) + 2

(
n− 1

2
− 1− j

)
K

(
Bi(2j + 1)

)]

+K(
Bi(n− 2)

)}
R3

+
{
(n−5)/2∑
j=−1

[(
n−1

2
−1− j

)
K

(
Bi(2j)

)+2K
(
Bi(2j +1)

)]+K(
Bi(n−3)

)}
R4,

where
R

(
Bi(0)

) = 8R1, R
(
Bi(−1)

) = 2R1,

K
(
Bi(n)

) = K(
Bi(n− 1)

)+ (n/2)−1∑
j=−1

K
(
Bi(2j + 1)

)
for n = 2p,

K
(
Bi(n)

) = K(
Bi(n− 1)

)+ (n−1)/2∑
j=−1

K
(
Bi(2j)

)
for n = 2p + 1,

K
(
Bi(0)

) = 4, K
(
Bi(−1)

) = 2, K
(
Bi(−2)

) = 1 and
K

(
Bi(j)

) = 0 for j � 3.

Corollary 13. LetBj(n) be the BH shown in figure 1(j). Then

R
(
Bj(n)

)=R(
Bj(n− 1)

)+ 2R
(
Bj(n− 2)

) + n−3∑
i=1

R
(
Bj(i)

)

+ 2

[
n−3∑
i=−1

(n− 1− i)K(
Bj(i)

)+ 2K
(
Bj(n− 2)

)]
R1

+ 2

[
2
n−3∑
i=−1

K
(
Bj(i)

)+K(
Bj(n− 2)

)]
R2

+
[

n−5∑
i=−1

(n− 1− i)K(
Bj(i)

)+ 4K
(
Bj(n− 3)

)+ 4K
(
Bj(n− 4)

)]
R3

+
[

n−5∑
i=−1

(n− 1− i)K(
Bj(i)

)+ 4K
(
Bj(n− 4)

)]
R4,

where
Bj(n) = 0 for j_0,

K
(
Bj(n)

) = K(
Bj(n− 2)

)+ n−1∑
i=−1

K
(
Bj(i)

)
,

K
(
Bj(n)

) = 1 for j = 0,1, and K
(
Bj(n)

) = 0 for n � 3.
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Figure 12. Two families of pericondensed benzenoid hydrocarbons.

Finally, for the two families of peri-BHs shown in figure 12, we give the recursive
formulae for enumeration of their LM-conjugated circuits.

Corollary 14. LetBk(n) be the BH shown in figure 12(1). Then

R
(
Bk(n)

)= 5R
(
Bk(n− 1)

)+ 4
n−2∑
i=1

R
(
Bk(i)

)

+ 2

[
4
n−2∑
i=0

(n− i)K(
Bk(i)

)+ 5K
(
Bk(n− 1)

)+ n
]
R1

+ 2

[
n−2∑
i=0

(8n − 7− 8i)K
(
Bk(i)

)+ 2K
(
Bk(n− 1)

)+ 2n

]
R2

+
[

4
n−2∑
i=0

(n+ 2− i)K(
Bk(i)

)+K(
Bk(n− 1)

)+ n+ 2

]
R3

+
[

2
n−3∑
i=0

(2n − 3− 2i)K
(
Bk(i)

)+ 3K
(
Bk(n− 2)

)+ n− 1

]
R4,

where

R
(
Bk(0)

) = 0, K
(
Bk(n)

) = 5K
(
Bk(n− 1)

)+ 4
n−2∑
i=0

K
(
Bk(i)

) + 1,

K
(
Bk(0)

) = 1 and K
(
Bk(i)

) = 0 for i � −1.

Corollary 15. LetBl[m,n] be the BH shown in figure 12(2). Then

R
(
Bl[m,n]

)=R(
Bl[m− 1, n])+ R(

Bl[m,n− 1])
+ 2

m∑
i=1

n∑
j=1

K
(
Bl[m− i, n− j ]

)
K

(
Bl[i − 1, j − 1])Ri+j−1,

where

K
(
Bl[m,n]

)=K(
Bl[m− 1, n]) + (

Bl[m,n− 1]),K(
Bl[m,0]

) = K(
Bl[0, n]

)
=K(

Bl[0,0]
) = 1.
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