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The linearly independent and minimal conjugated (LM-conjugated) circuits of benzenoid
hydrocarbons play the central role in the conjugated circuit model. For a general case, the enu-
meration of LM-conjugated circuits may be tedious as it requires construction of all Kekule
structures. In our previous work, a recursive method for enumeration of LM-conjugated cir-
cuits of benzenoid hydrocarbons was established. In this paper, we further extend the recursive
formulae for enumerations of LM-conjugated circuits for both catacondensed benzenoid hy-
drocarbons and some families of structurally related pericondensed benzenoid hydrocarbons.
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1. Introduction

The conjugated circuit model is a resonance-theoretic model was introduced by
Randic [1-3] in 1976 for the study of aromaticity and conjugation in polycyclic conju-
gated systems. The model was motivated from an empirical point of view elaborating the
Clar aromatic sextet theory [4]. The conjugated-circuit model has also a firm quantum-
mechanical basis [5—-7]. It can be derived regorously from the Pauling—Wheland reso-
nance theory [8,9] via a Simpson—Herndon model Hamiltonian [10,11]. In recent years,
many investigations on the conjugated-circuit model have been made [12—-24]. The enu-
meration of LM-conjugated circuits had led to expressions for the resonance energies of
polycyclic conjugated hydrocarbons [12]. Itis also applied to calculate generalized bond
orders of benzenoid hydrocarbons [13]. However, for a general case, the enumeration
of LM-conjugated circuits of benzenoid hydrocarbons requires to construct all Kekule
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structures and then to find a set of LM-conjugated circuits for every Kekule structure.
When sizes of molecules increase, the numbers of Kekule structures increase fast, hence
enumerating LM-conjugate circuits by the method becomes tedious.

It was suggested in [12] that rather than considering individually each single mole-
cule it may be better to review a family of related structures of which the molecule in
guestion is a member. By analyzing a sequence of expressions for the molecular reso-
nance energies, one tries to find some regularity for the coefficients indicating the contri-
butions of the LM-conjugated circuits of different sizes. In this way, the expressions of
resonance energies for still larger members of a family of structurally related structures
are obtained without explicit construction of Kekule structures.

A useful idea in that approach is a partitioning of resonance energy to the expres-
sions for the individual rings of the structures considered. The contribution of a;ring
of a benzenoid hydrocarbah to the summation expression of LM-conjugated circuits
of B may be denoted by a sequence of numbeiss (), 2(s;), ..., 7,(s;), ...), where
rj(s;) is the number of the LM-conjugated circuits of size 4 2 with respect to the
ring s;, which is called the ring code 6f. The total sum of ring codes of all rings &f
just corresponds to the summation over all LM-conjugated circuifs. of

For some families of structurally related structures, use of ring codes has special
advantage. It allows one to perceive regularities for the coefficients from the count of
LM-conjugated circuits of different sizes more readily. Figure 1 shows some families
of benzenoid hydrocarbons considered in [12]. Their ring codes were given by finding
the interrelation of the coefficients of various LM-conjugated circuits or finding the reg-
ularities or a recursion of a ring codes to smaller members of the families. However, in
general cases, it is usually very difficult to find such regularities among the coefficients
of various LM-conjugated circuits and the ring codes between smaller members of a
family of related structures.

In a previous work [14], we established a recursive method for enumeration of
LM-conjugated circuits of some benzenoid hydrocarbons, by which the summation ex-
pression of LM-conjugated circuits (called LM-conjugated circuit polynomial, or simply
LMCC-polynomial) of some benzenoid hydrocarbons can be directly obtained from the
LMCC-polynomials and the Kekule structure counts of their subgraphs. In order to ob-
tain recursive formulae of LMCC-polynomials of some benzenoid hydrocarbons by the
recursive method, further investigations are needed.

In arecent work [15], we also gave another method to obtain ring codes of any ben-
zenoid hydrocarbon from the Kekule structure counts of some subgraphs of the graph.
However, for catacondensed benzenoid hydrocarbons and some families of structurally
related pericondensed benzenoid hydrocarbons, it is still more convenient to obtain re-
cursive formulae of their LM-conjugated circuit polynomials directly.

In this paper, we extend the recursive formulae for enumeration of LM-conjugated
circuits for both catacondensed benzenoid hydrocarbons and some families of struc-
turally related pericondensed benzenoid hydrocarbons.
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Figure 1. Some families of benzenoid hydrocarbons.
2. Somerelated definitions and results

Definition 1. A benzenoid hydrocarbon (BH) is a 2-connected plane graph for which
every interior face is bounded by a regular hexagon. A connected subgraph of a BH is
said to be a BH-fragment (BHF). L& be a BH.B is said to be normal iB contains no

fixed bond (i.e., no bond appearing with the same multiplicity in every Kekule structure);
otherwiseB is essentially disconnected. A normal componB8nf B is a maximal
subgraph ofB with no fixed bond (possiblyB; = B, that is, B is normal). All normal
components oB are denoted by*. The boundary of an interior face of a BH or BH-
fragment is called a ring of it.
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Figure 2. A minimal conjugated circui» of the rings in a benzenoid hydrocarbaB (called a crown)
(C1 is not minimal).

Definition 2 [14]. A set S of linearly independent and minimal conjugated circuits
of a Kekule structurek; of a benzenoid hydrocarboB consists of a maximum
number of linearly independent circuits df in which every circuit is a conju-
gated circuit of K; (simply, a K;-conjugated circuitC, that is, a circuit whose
edges alternately present &-double andK;-single bonds), and has the minimum
length.

In fact, a setS of linearly independent and minimal conjugated circuits of a Kekule
structureK; of B is a basis in conjugated circuit space, where “linearly independent”
means any circuit inS cannot be obtained by linear combination of other circuits
in S.

We denote a circuit of sizend+ 2 in S by R,, and the summation expression
of S by R(K;) = ZRjes R; =) ,_1,. r(Ki)R,, wherer,(K;) is the number of the
circuits of size 4 +2 in S. The summation over all sets of LM-conjugated circuits of all
Kekule structures oB is denoted byR(B) = R = ) ., R(K;) = )_,_1, 12 Ry, where
r, = ZK[ r.(K;). We also sayR(B) is the LM-conjugated circuit polynomial a® or
simply the LMCC-polynomial ofB, which is a polynomial of degree one with multi-
variants. R(B) may also be denoted by a sequence of numbersy( rs, ..., r,,...),
called the LMCC-code oB.

Definition 3 [14]. Let s be a ring of a benzenoid hydrocarbd) and K; a Kekule
structure ofB. A K;-conjugated circuiC is said to be a minimal conjugated circuit of
the rings if the interior of C contains the interior of andC has the minimum length.
We also say that &;-conjugated circuiC of B is minimal if there is a ring in B such
that C is a minimal conjugated circuit of (see figure 2). The maximal subgraphpf
bounded byC is denoted byB[C].

In particular, a circuitC is said to be an minimal conjugated circuit of a ring
if there is a Kekule structur&; of B such thatC is a minimal K;-conjugated circuit
of s. The corollary 2 in [14] shows that a minim&l;-conjugated circuiC of a ring s
of a benzenoid hydrocarbaB corresponds to a unique ringsuch thatC is a minimal
K;-conjugated circuiC of s in B.

Theorem A [14]. Let K; be a Kekule structure of a benzenoid hydrocarl®&nand
let C be a minimal K;-conjugated circuit of a ring of B. Then B[C] is one of
the BHs indicated in figure 3, and th&;-double bonds inB[C] are uniquely deter-
mined.
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Figure 3. A general configuration of a minimé&l}-conjugated circuiC of a rings in a benzenoid hydro-
carbonB.

Theorem B [14]. Let K; be a Kekule structure of a benzenoid hydrocarionA set

S = {Cq,Cy, C3, ..., C,} of K;-conjugated circuits o3 is a set of LM-conjugated
circuits of K; if and only if for any rings; in any normal component a8, there is

exactly one circuiC; in S such thatC; is a minimalK;-conjugated circuit of;.

Theorem B establishes the theoretical basis of the partition of the LMCC-
polynomial of B into the LMCC-polynomials of rings oB. The LMCC-polynomial
of a ring s in B, denoted byR,(B), is determined by taking the summation expres-
sion of the minimal conjugated circuits of one for every Kekule structure &, and
R(B) = Zf R;(B). R;(B) may also be denoted by a sequence of numbers (ring code)
(ri(s), r2(s), ..., r,(s), ...), wherer,(s) is the coefficient of the terrR,, in R,(B).

Theorem C [14]. Let By, By, ..., B, be eitherr mutually disjoint BH-fragments with
B = B, U B, U ---U B, or the normal components of an essentially disconnected BH-
fragmentB. ThenR(B) = Y !_; (K(B)/K (B:))R(B;).

Definition 4 [14]. For an edge = uv of a benzenoid hydrocarboB, let B, (Bz) de-
note the labeled graph @ for which the edge: is labeled as double (single) bond,
and let B} (B}) denote the normal components Bfu—v (B—e) (B} and B may be
thought as the normal componentsRf(Bz), sincee is in fact a fixed double (single)
bond in B.(B;)). The subgraph oB,(Bz) induced by the hexagons iB,(Bz) which
are not inB}(BZ) is denoted byB,(B;). The contribution of all rings inB}(BZ) to
R(B.) (R(By)) is denoted byR*(B,)(R*(Bg)), and the contribution of all rings B,
(B;) to R(B.) (R(By)) is denoted byR'(B,) (R'(Bg)).

Theorem D [14]. Let e be an edge on the boundary of a benzenoid hydrocaband
let S, (B,)(Sn(Bs)) be the set of rings iB, (B). Let C,(B,)(C,(B;)) denote the set of
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p21,921,p+q23
B

Figure 4. A local structure in a benzenoid hydrocarbon.
minimal conjugated circuits of a ringin B.(Bz). Then

fors € Sy(B.). Ry(B.)= Y K(B-C)Rci-2a
CeCs(B)

1)
fors e Sh(Bé), RS(B;) = Z K(B—C)R(‘C‘_Z)M,
CeCy(Bp)
where|C| denotes the length @f, K (B—C) is the number of Kekule structures B+C;
R(B)= > RB)= > > K(B-CRcl -2 2
seSp(B)) seSp(B}) CeCy(Be)

R(B)= Y R(B= Y > K(B-ORl-2a

seSp(BY) seSp(BY) CeCs(Be)

Definition 5 [14]. Let e be an edge on the boundary of a benzenoid hydrocafon
If B ande satisfy one of the following conditions: (13 contains no crown (see the
benzenoid hydrocarbon in figure 2) as its subgraph;B(2pntains a local structure as
shown in figure 4, and is the marked edge in figure 4; (8) contains a local structure
as shown in figure 5, andis the marked edge in figure 5; thetis said to be a recursive
edge ofB.

Theorem E [14]. Let B be a BH which contains a recursive edgen the boundary
of B. Then

R(B) =R*(B,) + R*(B;) + R'(B.) + R'(Bz)
=R(B})+R(B})+ Y. Y. K(B-ORc|-2

s€SK(BL) CeCs(Be)

+ Y Y. KB-OR-2

seS;(By) CeCs(Bg)
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Figure 5. A local structure in a benzenoid hydrocarbon.

Definition 6 [14]. Let C be a minimal conjugated circuit of a ringof a benzenoid
hydrocarbonB, and lets” be a hexagon oB for which C N s’ £ @ and the interior of’

is contained in the exterior af. If C' = CAs’ (the symmetry difference of edge sets
of C ands’) is also a minimal conjugated circuit of then we say’ is obtained fronC

by a extension and is a extendible hexagon @. For a rings in B, (BZ), a minimal
conjugated circuiC of s in B, (Bg) is said to be minimum iC has the smallest length
andB[C] contains a smallest number of hexagons.

Theorem F [14]. Let e be a recursive edge of a benzenoid hydrocarBorand lets
be aring inB, (B)). Let C be a minimal conjugated circuit afin B, (Bz) which is
not minimum. TherC can be obtained from another minimal conjugated circuit iof
B. (Bz) by an extension.

Procedure 1 [14]. Lete be arecursive edge of a benzenoid hydrocarBpands a ring
in B,(B). Let C* be a unique minimum conjugated circuitin B, (B;).

(1) SetSo = {C*), S; = So.

(2) For every minimal conjugated circuif; in S;, find all extendible hexagons
of C;, extendC; to new minimal conjugated circuits, and set then$tg, .

(3) If S;y1 = 0, then go to (4). Otherwise set+- 1 — i, go to (2).
(4) SetC,(B,) = J,_1 S; (C,(Ba) = Uiy S)).

An example of application of procedure 1 is shown in figure 6.
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Cs(Bo)={C1,Ca.- - -Cs}-

oI ool

C=51,Cr=5145,, G5, (B)={ Cs},Cs, (Bs)={ C7}, Cs, (Be)={ Cs.Cs}, Cs, (B3)={C10,C11,Cr2}-

Figure 6. An example for application of procedure 1.

3.  LM-conjugated circuitsin catacondensed benzenoid hydrocarbons

In general cases, a catacondensed benzenoid hydrocarbon (cata-B&f) the
construction shown in figure 7, wheB, Bo, Bs, ..., Bi5 are subgraphs a8, each of
which is a cata-BH. Particularly, if, = nz = 0, B becomes a straight chain like cata-
BH.

Lemmal. Let B = B,(n) denote the straight cata-BH withh hexagons (see fig-
ure 1(a)). Then

R(B)=2» (n+1—iR;. (3)
i=1

Proof. B, and B; are shown in figure 8. It is easy to verify by theorem E and proce-
dure 1 that

R(B}) =0, R(BZ) = R(B,(n—1)), R'(B,) = Z R;, R'(B,) = Z R;,
i=1 i=1

R(B,(n)) =2 R; + R(B,(n — 1)). (4)

i=1
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Figure 7. The construction of a catacondensed benzenoid hydrocarbon.

[(DEELI =0

Be Bs

Figure 8. The labeled grapth. and B; for a straight catacondensed benzenoid hydroca®@md an
edgee of B.

Repeatedly using equation (4), we have

n n—1 n
R(Bsm)=2> Ri+2Y R +R(Bsn—2)=-=2) (n+1-i)R:.
i=1 i=1 i=1

Theorem 1. Let B be a cata-BH shown in figure 7. Then

R(B)=R(By) + (n1 — D[ K (B3)R(B2) + K (B2)R(B3)]
n—1

+2K(B2)K(Bs) ) (n —)R;
i=1
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Figure 9. The labeled graplB and B; for a catacondensed benzenoid hydrocarBand an edge of B.

ny np—1lnz—1
| TTxw) [zzzmﬁﬁzk}
L j=4 i=2 j=0 k=0
r 11 ny n3—1
+ HK(B) YD Rimpik
L j=6 i=2 k=0
ny np—1 15 ni
+ H K(B; )} DO Rigjims + [HK(BJ)}ZRZWW
L j=4,5,12 i=2 j=0 j=8 =2

where, ifn; = 0 (n3 = 0), thenK (B;) = 1for j =2,4,5(j =3,6,7), K(B;) =0 for
j=28,91011 (j =12 13 14,15), and

ny np—lnz—1 ny nz—1 ny np—1
S R =Y Ri+k(z 5 R,ﬂ-).

i=2 j=0 k=0 i=2 k=0 i=2 j=0

Proof. Take a boundary edgeon the hexagon labeled lay — 1 as the recursive edge.
ThenB} = B, U B3 U B,(n1 — 2), B = Bj (see figure 9).
By theorems C, E, lemma 1, and procedure 1, we have

n1—2

R(B})=2K(B2)K(B3) Y (n1—1—i)R; + (n1 — D[K(B2)R(B3) + K (B3)R(B2)].
i=1

n1—1 7 T ny np—1lnz—1
R'(B,)=K(B)K(B3) » R+ [1’[ K(B)) [Z DD Rt Z R; }

i=1 j=4 12]0k0

n1 n3—1 ny np—1
[1‘[ K (B, >} D) Rismu+ H K (B, >} > Ritjim

i=2 k=0 | j=4,5,12 i=2 j=0
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Figure 10. An unbranched catacondensed benzenoid hydrocBrbon

ni

15
+ |:Z K(Bj):| Z Ri+n2+n3’
j=8 i=2

ni—1 7 ni
R(B%) =R(By), R'(Bz) = K(B2)K (Bs3) Z R + []_[ K(Bj)} Z Ri.

i=1 j=4 i=2

and so (5) holds.

Corollary 1. Let B = By(my, mo, ..., m,;) denote an unbranched cata-BH as shown in
figure 10. Then

mp—1 m3
R(B)=m1R(Bp) + R(B3) + Y [2K(By)(m1— i) + K(B3)|R: +2K(B3) ) R
i=1 i=1
M m1 mo—1
+ K (Bs3) Z Z Ritj+ Rpy — R1:|
L i=2 j=0
[ m1+m2 mp+ms3
+ K (By) Z Ri + 2R 41 + Z Rii| + K(Bs) Ry tmz+1 (6)
L i=m,+2 i=mp+2

where, ifmy; = 0 (n3 = 0), thenK (B;) = 1for j = 2,3 (j = 3,4) andK (B;) = O for
j=z4( =9).
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Proof. By(mi, mo, ..., m;) corresponds to the case in theorem 1 with= ns =
ng = 0, andnl =mi, Ny = My, N4y = M3, Ng = M4. By theorem 1, we have

mp—1

R(B)=R(B1) + (m1— J)R(By) + 2K (Bp) ) (m1— DR,
i=1

myp mp—1 mi mj
+ K (Bs) { DD R+ Rl} + K(B) ) Rismy. ()
i=2 j=0 i=2 i=2

Similarly, we have by theorem E that

mj
R(By) =R(By) + R(Bs) + 2K (B3) Y _ R; + K (B4)(2R,11
i=1
mo+ms3

+ > R)+ K(Bs)Rupimaia
i=mp+2

With the substitution of the expression fB(B;) into (7), we obtain the expression (6).

Using expressions (5), (6), we can easily obtain the calculation formulae for enu-
meration of LM-conjugated circuits of the cata-BHSs in figure 1 as follows.

Corollary 2. Let By(n), n > 2, be the cata-BH shown in figure 1(b). Then

R(Bo(n)) = (6n — Ry +4(n — DRy + > (4n + 3—4)R; + Ryupa.
i=3

Corollary 3. Let Bc(n),n > 1, be the cata-BH shown in figure 1(c). Then

R(Be(n)) = 4(4n + DRy + 8nRo +4) (21 +3— 2))R; + 6R,41 + 2R, 42.
i=3

Corollary 4. Let B4(n), n > 2, be the cata-BH shown in figure 1(d). Then

n

R(By(n)) = 2(8n — 3Ry + 2(4n —5)Ro+ Y (82 +5— 8i)R; + 3R,41 + Ryso.
i=3

Corollary 5. Let Be(n),n > 1, be the cata-BH shown in figure 1(e). Then

n

R(Be(n)) = 96nRy + 8Ry + 8 "(4n +5— 4i)R; + 26R, 11 + 12R, 12 + 2R, 3.
i=2
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Corollary 6. Let Bi(n), n > 3, be the cata-BH shown in figure 1(f). Then

n—1
R(Bi(n)) = Z Fi(2F,_i1R1+2F,_; 2R+ F,_; _3R3),
i=0

whereF; = F;_1 + F;_, is Fibonacci's numbetfy = F; = 1 andF = 0fori < —1.
For more general cases, we give the following examples.

Corollary 7. Let By(m1, m3) be an unbranched cata-BH (see figure 10). Then

mi m3
R(Bu(my, m2)) =Y [20mz+ D(my — i) + 1R + 2 [ma(ma+ 1— i) + 1]R;
i=1 i=1
mi+mp my mo—1
+ Z R; + Z Z Riij— R1+ 2R, ,41.
i=mo+2 i=2 j=0

Corollary 8. Let B,(m1, m», m3) be an unbranched cata-BH (see figure 10). Then

R(By(m1, mz, m3))
m1—1

= Y {2[malms+ D + 1]0m1 — i) + (ma + D} R;
i=1

mz

+ Z [2m1(m3 + 1) (mz — i) + m1 + 2m3 + 2] R;
i=1
m3

+2) [(mg+1—i)mimz + 1) + m1]R;
i=1
mq mp—1 mp m3—1 my+my mp+ms3
+(m3+1)z Z Ri+j+mlz Z Riyj+ Z R + Z R
i=2 j=0 i=2 j=0 i=my+2 i=my+2
mp+m3
+my Z R — (m1+m3+ DRy + (m3+ DRy + 2Rpp1 +2m1R,501
i=mg3+2

+ Rm2+m3+1-
Corollary 9. Let By(n1, ny, n3) denote the cata-BH shown in figure 11. Then

R(By(n1, nz, n3))

ni ny

=Y [22+ Dz + D — i) + 1R + ) [201(r3+ Dz + 1= i) + 1] R,
i=1 i=1
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Figure 11. A catacondensed benzenoid hydrocal®etm1, np, n3) consisting of three straight catacon-
densed benzenoid hydrocarbons.

n3 ny np—1lnz—1 ny np—1

Z 2Aninz+ Dz +1= D+ IR+ ) > > Rivjra+ ) Y Rivjung
i= i=2 j=0 k=0 i=2 j=0

ny n3z—1 np—1lnz—1 ni+ny+n3

+ Z Z Rijny+j + Z Z Ritj + Z R; —2R1 + Ryp1+ Rugy1.

i=2 k=0 i=2 j=0 i=ng+1

4. LM-conjugated circuitsin some families of structurally related
pericondensed benzenoid hydrocarbons

For enumerations of LM-conjugated circuits in some families of structurally related
pericondensed benzenoid hydrocarbons, we need to use theorem E and procedure 1,
and often need to deal with several recursive relations of several families of structurally
related subgraphs for a family of structurally related peri-BHs. We will give some results
but omit the operation processes.

We first give the recursive formulae for enumeration of LM-conjugated circuits of
the peri-BHs in figure 1.

Corallary 10. Let By4(n) be the BH shown in figure 1(g). Then

R(By(m) =2 (51 +8—5)R: + (100 + 6)R1 + 4(n + DRz + (1 + DR+ 6R, 41
i=1
+ 4R, 12+ 2R, 3.
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Corollary 11. Let By(n) be the BH shown in figure 1(h). Then

n—1 n—2
R(Bn()) =2 R(Bn(i)) + 2[2 > (= 1—)K(By(i)) + K (Ba(n — l)):|R1

i=0 i=—1

n—2 n—3
+8 ) K(Bn(i))Ro+ 2[3 > (n—2—i)K(Bn(0)) + 2K (Bn(n — 2))} Rs

i=—1 i=—1

n—3 n—4
+8)  K(Bu())Ra+4 ) (n—3—i)K(B(i))Rs,
i=—1 i=—1

where
R(By(0) =2R1,  K(By(m) =237"11 K(Bn(D),  K(Ba(0) =2,
K(Bn(-1) =1, and K(By(i) =0 fori< -2

Corollary 12. Let Bj(n) be the BH shown in figure 1(i). Then, far= 2p,
R(Bi(n))

(n/2)—2

=2R(Bi(n— 1)+ Y R(Bi(2j+1)
j=—1
(n/2)—2 n
+ 2[ j;l (E —-1- j)K(Bi(Zj + 1)) + K(Bi(n — 1))}1&1
n—2
+2 ) K(Bi())R:
j=-1
(n/2)—2 n
+ { > (E —-1- j)[ZK(Bi(Zj)) + K(Bi(2j +1)] + K(Bi(n — 2))]R3
j=—1
(n/2)—2 "
+ { > [2k(Bi2)) + (5 —2- j>K(Bi(2j +1)] + K (Bi(n — 3))}R4;
j=—1
forn =2p+1,
R(Bi(n))
(n=3)/2
= 2R(Bi(n — 1)) + Z R(Bi(2)))
j=0

n—2

(n—3)/2 _ l
n 2[ 3 (”T - j)K(Bi(Zj)) + K(Bi(n — 1))}R1+ 23" K(Bi()R,

j=-1 j=-2
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=32 n—1 n—1
—— — j |K(Bj(2j 2l —— —1—j)K(B;(2] +1
+{j;1[( 5 J) (.(J))+( 5 J) (l(J+))]
+ K(Bi(n — 2))}1%3

N { (,%2 [(n_;l 1 j) K (Bi(2))) + 2K (Bi(2j + 1))] + K (Bi(n ~3)) ]R“

j=—1
where
R(Bi(0)) = 8Ry, R(Bi(—-1)) = 2Ry,
(nj2)—1
K(B(n)=K(Bn—D)+ Y K(Bi(2j+1) forn=2p,
j=—1
(1-1)/2
K(B(m)=K(Bn—D)+ Y K(Bi(2))) forn=2p+1,
j=-1

K(Bi(0)) = 4, K(Bi(-1) =2, K(Bi(-2)=1 and
K(Bi(j))=0 for;j<3.

Coroallary 13. Let Bj(n) be the BH shown in figure 1(j). Then
n—3
R(Bi(n)) =R(Bj(n — 1)) + 2R(Bj(n — 2)) + Y _ R(B;(i))

i=1

n—3
+ 2[ Z(n —1—i)K(Bj(i)) + 2K (Bj(n — 2))} R1
i=—1

+2[22 (Bi(i)) + K ( Bj(n—2))j|

i=—1

n—5
- [ > (n—1—i)K(Bj(i)) + 4K (Bj(n — 3)) + 4K (Bj(n — 4)):|R3

i=—1

n—5
+ [ Z(n —1-i)K(Bj@i)) + 4K (Bj(n — 4))}1?4

i=—1
where
Bj(n) =0 forj_O,

K (Bj(n)) = K(Bj(n — 2)) + Z (Bi(i)),

i=—1
K(Bi(n) =1 forj=0,1, and K(Bj(n) =0 forn<3.
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Figure 12. Two families of pericondensed benzenoid hydrocarbons.

Finally, for the two families of peri-BHs shown in figure 12, we give the recursive
formulae for enumeration of their LM-conjugated circuits.

Corollary 14. Let Bx(n) be the BH shown in figure 12(1). Then
n—2

R(B«(n)) =5R(Bk(n — 1)) +4 Y R(B«(i))

i=1

n—2
+ 2[42(;1 — i)K (B(i)) + 5K (Bx(n — 1)) + n}Rl

i=0

n—2
+ 2[ Z(Sn —7—8)K(Bk(i)) + 2K (Bx(n — 1)) + 2ni|R2
i=0

n—2
+ [42(;1 +2—i)K(Bk(i)) + K(Bc(n — 1)) +n + 2} Rs
i=0

n—3
+ [2 > (2n = 3—2)K(B«(i)) + 3K (Bu(n — 2)) +n — 1} Ra,

i=0

where
n—2

R(Bk(0)) =0, K (Bc(n)) = 5K (Bc(n — 1) + 4 " K (B(i)) + 1,
i=0
K(B«(0) =1 and K(By(i))=0 fori<—1.

Corollary 15. Let Bj[m, n] be the BH shown in figure 12(2). Then
R(B|[m, n]) = R(B|[m -1, n]) + R(B|[m, n— l])
+2) Y K(Bilm —i.n— j)K(Bli — 1, j — 1) Risj1,
i=1 j=1
where
K(Bi[m,nl)=K(Bi[m — 1,n]) + (B[m,n — 1]), K(Bi[m, 0]) = K (B[O, n])
=K (B[0,0]) = 1.
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